Skip navigation
Use este identificador para citar ou linkar para este item: https://repositorio.ufpe.br/handle/123456789/51592

Compartilhe esta página

Título: Exploring reinforcement learning in path planning for omnidirectional robot soccer
Autor(es): Cruz, José Victor Silva
Palavras-chave: Path planning; Omnidirectional robot; Reinforcement learning
Data do documento: 17-Abr-2023
Citação: CRUZ, José Victor Silva. Exploring reinforcement learning in path planning for omnidirectional robot soccer. Trabalho de Conclusão de Curso (Engenharia da Computação) - Universidade Federal de Pernambuco, Recife, 2023.
Abstract: Path Planning consists of a widely studied computational problem of great applicability in autonomous robotics and virtual reality environments that aims to solve the following problem: given the origin of an entity in space, obtain a feasible collision-free route to the destination. From the characteristics of a given environment, in this case, a soccer field in conventional game conditions that imply a greater complexity given the dynamics of the obstacles, it is intended to use Reinforcement Learning – technique that has gained expression over time due to the ability of its applications to perform better than humans in different scenarios –, to optimize the trajectories performed by an agent as it maximizes the reward accumulated within the executed iterations.
URI: https://repositorio.ufpe.br/handle/123456789/51592
Aparece nas coleções:(TCC) - Engenharia da Computação

Arquivos associados a este item:
Arquivo Descrição TamanhoFormato 
Exploring_Reinforcement_Learning_in_Path_Planning_for_Omnidirectional_Robot_Soccer.pdf10,67 MBAdobe PDFThumbnail
Visualizar/Abrir


Este arquivo é protegido por direitos autorais



Este item está licenciada sob uma Licença Creative Commons Creative Commons